login
A068293
a(1) = 1; thereafter a(n) = 6*(2^(n-1) - 1).
10
1, 6, 18, 42, 90, 186, 378, 762, 1530, 3066, 6138, 12282, 24570, 49146, 98298, 196602, 393210, 786426, 1572858, 3145722, 6291450, 12582906, 25165818, 50331642, 100663290, 201326586, 402653178, 805306362, 1610612730, 3221225466, 6442450938, 12884901882
OFFSET
1,2
COMMENTS
1/4 the number of colorings of an n X n octagonal array with 4 colors.
Consider the planar net 3^6 (as in the top left figure in the uniform planar nets link). Then a(n) is the total number of ways that a spider starting at a point P can reach any point n steps away by using a path of length n. - N. J. A. Sloane, Feb 20 2016
From Gary W. Adamson, Jan 13 2009: (Start)
Equals inverse binomial transform of A091344: (1, 7, 31, 115, 391, ...).
Equals binomial transform of (1, 5, 7, 5, 7, 5, ...). (End)
For n > 1, number of ternary strings of length n with exactly 2 different digits. - Enrique Navarrete, Nov 20 2020
LINKS
Ana Rechtman, Février 2016, 3e défi, Images des Mathématiques, CNRS, 2016.
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
FORMULA
G.f.: (1+x)*(1+2*x)/((1-x)*(1-2*x)). - Benoit Cloitre, Apr 13 2002
a(n) = 3*a(n-1) - 2*a(n-2); a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Nov 27 2011
E.g.f.: 1 - 6*exp(x)*(exp(x) - 1). - Stefano Spezia, May 18 2024
MATHEMATICA
a=0; lst={1}; k=6; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
Transpose[NestList[{First[#]+1, 6(2^First[#]-1)}&, {1, 1}, 30]][[2]] (* or *) Join[{1}, LinearRecurrence[{3, -2}, {6, 18}, 30]] (* Harvey P. Dale, Nov 27 2011 *)
PROG
(PARI) a(n)=polcoeff(prod(i=1, 2, (1+i*x))/(prod(i=1, 2, (1-i*x))+x*O(x^n)), n)
for(n=0, 50, print1(a(n), ", "))
(Magma) [1] cat [6*(2^(n-1)-1): n in [2..40]]; // Vincenzo Librandi, Feb 20 2016
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
R. H. Hardin, Feb 24 2002
EXTENSIONS
More terms from Benoit Cloitre, Apr 13 2002
Old definition (which is now a comment) replaced with explicit formula by N. J. A. Sloane, May 12 2010
STATUS
approved