login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068293
a(1) = 1; thereafter a(n) = 6*(2^(n-1) - 1).
10
1, 6, 18, 42, 90, 186, 378, 762, 1530, 3066, 6138, 12282, 24570, 49146, 98298, 196602, 393210, 786426, 1572858, 3145722, 6291450, 12582906, 25165818, 50331642, 100663290, 201326586, 402653178, 805306362, 1610612730, 3221225466, 6442450938, 12884901882
OFFSET
1,2
COMMENTS
1/4 the number of colorings of an n X n octagonal array with 4 colors.
Consider the planar net 3^6 (as in the top left figure in the uniform planar nets link). Then a(n) is the total number of ways that a spider starting at a point P can reach any point n steps away by using a path of length n. - N. J. A. Sloane, Feb 20 2016
From Gary W. Adamson, Jan 13 2009: (Start)
Equals inverse binomial transform of A091344: (1, 7, 31, 115, 391, ...).
Equals binomial transform of (1, 5, 7, 5, 7, 5, ...). (End)
For n > 1, number of ternary strings of length n with exactly 2 different digits. - Enrique Navarrete, Nov 20 2020
LINKS
Ana Rechtman, Février 2016, 3e défi, Images des Mathématiques, CNRS, 2016.
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
FORMULA
G.f.: (1+x)*(1+2*x)/((1-x)*(1-2*x)). - Benoit Cloitre, Apr 13 2002
a(n) = 3*a(n-1) - 2*a(n-2); a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Nov 27 2011
E.g.f.: 1 - 6*exp(x)*(exp(x) - 1). - Stefano Spezia, May 18 2024
MATHEMATICA
a=0; lst={1}; k=6; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
Transpose[NestList[{First[#]+1, 6(2^First[#]-1)}&, {1, 1}, 30]][[2]] (* or *) Join[{1}, LinearRecurrence[{3, -2}, {6, 18}, 30]] (* Harvey P. Dale, Nov 27 2011 *)
PROG
(PARI) a(n)=polcoeff(prod(i=1, 2, (1+i*x))/(prod(i=1, 2, (1-i*x))+x*O(x^n)), n)
for(n=0, 50, print1(a(n), ", "))
(Magma) [1] cat [6*(2^(n-1)-1): n in [2..40]]; // Vincenzo Librandi, Feb 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Feb 24 2002
EXTENSIONS
More terms from Benoit Cloitre, Apr 13 2002
Old definition (which is now a comment) replaced with explicit formula by N. J. A. Sloane, May 12 2010
STATUS
approved