login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011930
a(n) = floor(n(n-1)(n-2)(n-3)/20).
2
0, 0, 0, 0, 1, 6, 18, 42, 84, 151, 252, 396, 594, 858, 1201, 1638, 2184, 2856, 3672, 4651, 5814, 7182, 8778, 10626, 12751, 15180, 17940, 21060, 24570, 28501, 32886, 37758, 43152, 49104, 55651, 62832, 70686, 79254, 88578, 98701
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1, 1, -4, 6, -4, 1).
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) - 4*a(n-6) + 6*a(n-7) - 4*a(n-8) + a(n-9).
G.f.: x^4*(x^4+2*x^3+2*x+1) / ((1-x)^5*(x^4+x^3+x^2+x+1)). (End)
MATHEMATICA
CoefficientList[Series[x^4*(x^4+2*x^3+2*x+1)/((1-x)^5*(x^4+x^3+x^2+x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 19 2012 *)
Table[Floor[n(n-1)(n-2)(n-3)/20], {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1, 1, -4, 6, -4, 1}, {0, 0, 0, 0, 1, 6, 18, 42, 84}, 40] (* Harvey P. Dale, Apr 08 2013 *)
PROG
(Magma) [Floor(n*(n-1)*(n-2)*(n-3)/20 ): n in [0..40]]; // Vincenzo Librandi, Jun 19 2012
CROSSREFS
Sequence in context: A015942 A009945 A270683 * A330844 A068293 A334839
KEYWORD
nonn,easy
STATUS
approved