The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242609 Expansion of phi(-q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function. 3
 1, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 2, -8, 0, 0, 6, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, -4, 0, 0, 4, 0, 0, 0, 0, -10, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q)^2 * eta(q^16)^5 / (eta(q^2) * eta(q^8)^2 * eta(q^32)^2) in powers of q. G.f.: (Sum_{k in Z} (-x)^k^2) * (Sum_{k in Z} (x^8)^k^2). a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0.  a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = -2 * A112603(n). a(8*n + 4) = 2 * A113411(n). a(n) = (-1)^n * A226225(n). EXAMPLE G.f. = 1 - 2*q + 2*q^4 + 2*q^8 - 6*q^9 + 4*q^12 + 2*q^16 - 4*q^17 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; PROG (PARI) {a(n) = if( n<1, n==0, 2 * (-1)^n * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))}; (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^16 + A)^5 / (eta(x^2 + A) * eta(x^8 + A)^2 * eta(x^32 + A)^2), n))}; CROSSREFS Cf. A033715, A112603, A113411, A226225. Sequence in context: A108497 A108498 A178923 * A226225 A329265 A130209 Adjacent sequences:  A242606 A242607 A242608 * A242610 A242611 A242612 KEYWORD sign AUTHOR Michael Somos, May 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 18:33 EDT 2020. Contains 333117 sequences. (Running on oeis4.)