

A242607


Start of a triple of consecutive squarefree numbers each of which has exactly 4 distinct prime factors.


3



27962, 37145, 39234, 42182, 50138, 51986, 58562, 62643, 64074, 83082, 84774, 89089, 95642, 120783, 123486, 133903, 134826, 146165, 149606, 153543, 159182, 166495, 170751, 176754, 177122, 178086, 178087, 179330, 180782, 203433, 207974, 211562, 212583, 214489, 219063, 219894, 219963, 225069, 228135
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..39.
Daniel C. Mayer, Define an "mtriple" to consist of three consecutive squarefree positive integers, each with exactly m prime divisors, Number Theory group on LinkedIn.com


EXAMPLE

The two squarefree numbers following a(1)=27962, 27965 and 27966, also have 4 prime divisors just as a(1).


MATHEMATICA

Transpose[Select[Partition[Select[Range[230000], SquareFreeQ], 3, 1], PrimeNu[ #] =={4, 4, 4}&]][[1]] (* Harvey P. Dale, Jul 06 2014 *)


PROG

(PARI) (back(n)=for(i=1, 2, until(issquarefree(n), )); n); for(n=1, 9999, issquarefree(n)next; ndk==ndm&&omega(n)==ndm&&ndk==4&&print1(back(n)", "); ndk=ndm; ndm=omega(n))


CROSSREFS

See A242605A242608 for squarefree triples with m = 2..5 prime factors; A242621 (first terms for positive m).
Sequence in context: A206618 A233430 A220986 * A203658 A247992 A236093
Adjacent sequences: A242604 A242605 A242606 * A242608 A242609 A242610


KEYWORD

nonn


AUTHOR

M. F. Hasler, May 18 2014


EXTENSIONS

Minor edit by Hans Havermann, Aug 19 2014


STATUS

approved



