login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242604
a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, for n >= 1.
2
0, 9, 56, 195, 504, 1085, 2064, 3591, 5840, 9009, 13320, 19019, 26376, 35685, 47264, 61455, 78624, 99161, 123480, 152019, 185240, 223629, 267696, 317975, 375024, 439425, 511784, 592731, 682920, 783029, 893760, 1015839, 1150016, 1297065
OFFSET
1,2
COMMENTS
1/a(n), for n >= 2, is in base n represented by 0.repeat(0,0,0,1,1,1). This is instance p = 3 of the general formula for 0.repeat(0^(q),1^(q)) (meaning here q zeros followed by q 1's) in base b >= 2 which is 1/a(q,b) with a(q,b) = (b - 1)*(b^p + 1), for p >= 1.
FORMULA
a(n) = (n - 1)*(n^3 + 1) = n^4 - n^3 + n - 1, n >= 1.
O.g.f.: x^2*(9 + 11*x + 5*x^2 - x^3)/(1 - x)^5.
MAPLE
A242604:=n->(n-1)*(n^3+1); seq(A242604(n), n=1..50); # Wesley Ivan Hurt, Jun 20 2014
MATHEMATICA
Table[n^4-n^3+n-1, {n, 40}] (* Harvey P. Dale, Jun 20 2019 *)
PROG
(Magma) [(n - 1)*(n^3 + 1) : n in [1..50]]; // Wesley Ivan Hurt, Jun 20 2014
CROSSREFS
Cf. A005563 (case q=1), A062158 (case q=2).
Sequence in context: A114026 A368889 A245488 * A212150 A203838 A097556
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 20 2014
STATUS
approved