login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377657
Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..k} tan(j*Pi/(1 + 2*k))^(2*n).
2
1, 0, 2, 0, 3, 3, 0, 9, 10, 4, 0, 27, 90, 21, 5, 0, 81, 850, 371, 36, 6, 0, 243, 8050, 7077, 1044, 55, 7, 0, 729, 76250, 135779, 33300, 2365, 78, 8, 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9, 0, 6561, 6841250, 50028755, 34420356, 5476405, 312390, 8295, 136, 10
OFFSET
0,3
COMMENTS
Based on an observation made by Fredrik Johansson about A376777, which is the main diagonal of this array.
FORMULA
Row n of A091042(n, k) = binomial(2*n+1, 2*k) gives the polynomial Pe(n, x), with zeros in -tan(Pi/2*n+1)^2, -tan(2*Pi/2*n+1)^2, ..., -tan(n*Pi/2*n+1)^2. Let Pm(n, k, x) be the polynomial with zeros in (-tan(Pi/2*n+1)^2)^k, (-tan(2*Pi/2*n+1)^2)^k, ..., (-tan(n*Pi/2*n+1)^2)^k, then A(k, n) is the coefficient of X^(n-1) in the polynomial Pm(n, k, x). A way to do this calculation without evaluation of irrational numbers is to obtain the companion matrix M of the polynomial Pe(n, x), then A(k, n) = tr(M^k) (the trace of M^k). - Thomas Scheuerle, Nov 11 2024
EXAMPLE
Array begins
[0] 1, 2, 3, 4, 5, 6, ... A000027
[1] 0, 3, 10, 21, 36, 55, ... A014105
[2] 0, 9, 90, 371, 1044, 2365, ... A377858
[3] 0, 27, 850, 7077, 33300, 113311, ... A376778
[4] 0, 81, 8050, 135779, 1070244, 5476405, ...
[5] 0, 243, 76250, 2606261, 34420356, 264893255, ...
[6] 0, 729, 722250, 50028755, 1107069876, 12813875437, ...
[7] 0, 2187, 6841250, 960335173, 35607151476, 619859803695, ...
.
Seen as a triangle T(n, k) = A(n-k, k):
[0] 1;
[1] 0, 2;
[2] 0, 3, 3;
[3] 0, 9, 10, 4;
[4] 0, 27, 90, 21, 5;
[5] 0, 81, 850, 371, 36, 6;
[6] 0, 243, 8050, 7077, 1044, 55, 7;
[7] 0, 729, 76250, 135779, 33300, 2365, 78, 8;
[8] 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9;
MAPLE
A := (n, k) -> add(tan(j*Pi/(1 + 2*k))^(2*n), j = 0..k):
seq(print(seq(round(evalf(A(n, k), 32)), k = 0..6)), n = 0..7);
PROG
(PARI)
A(n, k) = {trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^n)+(n==0) } \\ Thomas Scheuerle, Nov 11 2024
CROSSREFS
Columns: A376478.
Cf. A376777 (main diagonal), A377658 (antidiagonal sums).
Cf. A091042.
Sequence in context: A337841 A298605 A180013 * A094067 A094112 A333303
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 10 2024
STATUS
approved