login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377658
a(n) = Sum_{k=0 .. n} Sum_{j=0 .. k} tan(j*Pi/(1 + 2*k))^(2*(n - k)). Antidiagonal sums of A377657.
1
1, 2, 6, 23, 143, 1344, 16476, 248509, 4519021, 97094158, 2419043330, 68973522675, 2228418011291, 80844520830828, 3266496719516152, 145973848760893369, 7172279845906943513, 385419654638220638810, 22543794177677289243966, 1429137150185034529444879, 97815341290407924477479399
OFFSET
0,2
MAPLE
a := n -> add(add(tan(j*Pi/(1 + 2*k))^(2*(n - k)), j = 0..k), k = 0..n):
seq(round(evalf(a(n), 64)), n = 0..20);
PROG
(PARI)
a(n) = { sum(k=0, n, trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^(n-k))+((n-k)==0)) } \\ Thomas Scheuerle, Nov 11 2024
CROSSREFS
Cf. A377657.
Sequence in context: A358609 A364791 A020122 * A327426 A086554 A213324
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 11 2024
STATUS
approved