login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213324
Number of permutations of n objects such that no five-element subset is preserved.
2
1, 1, 2, 6, 24, 0, 265, 2260, 20145, 200240, 2492225, 23163480, 270877705, 3449462080, 48030998625, 713129276000, 11685451112225, 198919432944000, 3585292622812225, 68053546078588000, 1360638669122771625, 28525836193802883200, 627637954389517169825, 14435957818250131813200, 346518764145610187160625
OFFSET
0,3
COMMENTS
Limit_{n->oo} a(n)/n! = (35-24*exp(1/4)+24*exp(1/3)+24*exp(7/12)+24*exp(3/4))/(24*exp(137/60)) = 0.5585422951...
FORMULA
E.g.f.: ((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x).
EXAMPLE
For n=6 the only permutations that fix no five-element subset are the 120 6-cycles, the 90 products of a 4-cycle and a 2-cycle, the 40 products of two 3-cycles, and the 15 products of three 2-cycles, therefore a(5)=265.
PROG
(PARI)
x='x+O('x^66);
egf=((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x);
Vec(serlaplace(egf))
/* Joerg Arndt, Jun 09 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Les Reid, Jun 08 2012
STATUS
approved