OFFSET
0,3
COMMENTS
a(n) is the number of acyclic functions from subsets of size n-1 or less of {1,...,n+1} to {1,2,...,n+1}. - Dennis P. Walsh, Nov 06 2015
a(n) is the number of parking functions whose largest element is not n+1 and length is n+1. For example, a(2) = 7 because there are seven such parking functions, namely (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2), (2,2,1). - Ran Pan, Nov 15 2015
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{i=0..n-2} binomial(n,i)*((i+1)^(i-1)*(n-i-1)^(n-i-1))).
E.g.f.: LambertW(-x)*(LambertW(-x)+x)/((1+LambertW(-x))*x^2). - Alois P. Heinz, Aug 12 2017
MAPLE
MATHEMATICA
Table[(n + 2)^n - (n + 1)^n, {n, 0, 20}] (* T. D. Noe, Mar 07 2013 *)
PROG
(Maxima) a(n):=sum(binomial(n, i)*((i+1)^(i-1)*(n-i-1)^(n-i-1)), i, 0, n-2);
(PARI) vector(40, n, n--; (n+2)^n-(n+1)^n) \\ Altug Alkan, Nov 11 2015
(Magma) [(n+2)^n - (n+1)^n : n in [0..20]]; // Wesley Ivan Hurt, Nov 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Mar 03 2013
STATUS
approved