|
|
A213328
|
|
Analog of Fermat quotients: a(n) = ((round((phi_3)^p)-3)/p, where phi_3 = (3+sqrt(13))/2 and p = prime(n).
|
|
1
|
|
|
4, 11, 78, 612, 46374, 428040, 38948910, 380144556, 37367223558, 38467601033550, 392545092308724, 426897839167539480, 45841425452161683630, 476794964068892779068, 51906117696097060014342, 59746844088106673671809870, 69664778857791165966384195366
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For similar sequence for base 2, see A007663. For similar sequences for golden ratio and silver ratio, see A064723 and A213327. Note that phi_3 is called "bronze ratio".
|
|
LINKS
|
Table of n, a(n) for n=1..17.
|
|
CROSSREFS
|
Cf. A007663, A096060, A146211, A180511, A164740, A222207, A064723, A213327.
Sequence in context: A151826 A032110 A054234 * A181275 A000850 A004796
Adjacent sequences: A213325 A213326 A213327 * A213329 A213330 A213331
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev and Peter J. C. Moses, Mar 03 2013
|
|
STATUS
|
approved
|
|
|
|