login
Analog of Fermat quotients: a(n) = (round((phi_3)^p)-3)/p, where phi_3 = (3+sqrt(13))/2 and p = prime(n).
1

%I #20 Dec 25 2023 18:09:04

%S 4,11,78,612,46374,428040,38948910,380144556,37367223558,

%T 38467601033550,392545092308724,426897839167539480,

%U 45841425452161683630,476794964068892779068,51906117696097060014342,59746844088106673671809870,69664778857791165966384195366

%N Analog of Fermat quotients: a(n) = (round((phi_3)^p)-3)/p, where phi_3 = (3+sqrt(13))/2 and p = prime(n).

%C For similar sequence for base 2, see A007663. For similar sequences for golden ratio and silver ratio, see A064723 and A213327. Note that phi_3 is called "bronze ratio".

%Y Cf. A007663, A096060, A146211, A180511, A164740, A222207, A064723, A213327.

%K nonn

%O 1,1

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Mar 03 2013