|
|
A222207
|
|
Morley quotients: (2^(2*p-2) - (-1)^((p-1)/2)*binomial(p-1,(p-1)/2)) / p^3, where p = prime(n) and n >= 3.
|
|
3
|
|
|
2, 12, 788, 7636, 874202, 10018884, 1445893544, 2954512034024, 38700329118256, 93229749133527532, 17540746936557672236, 243284404062970619608, 47694250379410432495952, 136236017676683906365850456, 404504597532158799519693872144, 5856120097210409121404621878992, 18102352585707069737371994385420772, 3894254646848417473467131712404310728
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
COMMENTS
|
Morley (1894/95) proved 2^(2*p-2) == (-1)^((p-1)/2)*binomial(p-1,(p-1)/2) mod p^3 for all primes p > 3.
Morley quotients are even, since 2^(2*p-2) and binomial(p-1,(p-1)/2) are even and p^3 is odd.
|
|
LINKS
|
|
|
EXAMPLE
|
prime(3) = 5, so a(3) = (2^(2*5-2) - (-1)^((5-1)/2)*binomial(5-1,(5-1)/2))/5^3 = (2^8 - binomial(4,2))/5^3 = (256-6)/125 = 2.
|
|
MATHEMATICA
|
m[p_] := (2^(2*p-2) - (-1)^((p-1)/2)*Binomial[p-1, (p-1)/2])/p^3; Table[ m[ Prime[n]], {n, 3, 20}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|