login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A084337
Rearrangement of positive integers so that the successive ratios (of the larger to the smaller term) are all distinct integers. a(m)/a(m-1) = a(k)/a(k-1) iff m = k (assuming a(m) > a(m-1), otherwise the ratio a(m-1)/a(m) is to be considered). Priority is given to smallest number not included earlier rather than to the successive ratio that has not occurred earlier.
4
1, 2, 6, 24, 3, 15, 90, 5, 35, 315, 7, 70, 770, 10, 120, 4, 52, 728, 8, 128, 1920, 12, 204, 3876, 17, 340, 7140, 14, 308, 11, 253, 6072, 22, 550, 14300, 13, 351, 9, 261, 8091, 29, 928, 16, 528, 17952, 32, 1120, 20, 720, 18, 666, 25308, 19, 779, 32718, 21, 903, 39732
OFFSET
0,2
COMMENTS
The sequence of successive ratios is 2/1, 6/2, 24/6, 24/3, 15/3, 90/15, 90/9, 63/9, 63/7, ... or 2, 3, 4, 8, 5, 6, 10, 7, 9, ...
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..10000 (0..5000 from Ivan Neretin)
MATHEMATICA
a = r = {1}; Do[If[(ds = Select[Divisors[a[[-1]]], ! MemberQ[a, #] && ! MemberQ[r, a[[-1]]/#] &, 1]) != {}, nxta = ds[[1]]; nxtr = a[[-1]]/nxta, k = 1; While[MemberQ[r, k] || MemberQ[a, a[[-1]]*k], k++]; nxtr = k; nxta = k*a[[-1]]]; AppendTo[a, nxta]; AppendTo[r, nxtr], {n, 57}]; a (* Ivan Neretin, Jul 05 2015 *)
PROG
(Python)
from sympy import divisors
from itertools import islice
def agen(): # generator of terms
mina, an, aset, mink, kset = 1, 1, {1}, 1, set()
while True:
yield an
k1, ak1, k2 = 0, mina, mink
if mina < an:
for d in divisors(an):
if d not in aset and an//d not in kset:
k1 = an//d
break
while k2 in kset or an*k2 in aset:
k2 += 1
an, k = (an//k1, k1) if k1 > 0 else (an*k2, k2)
aset.add(an)
kset.add(k)
while mina in aset: mina += 1
while mink in kset: mink += 1
print(list(islice(agen(), 58))) # Michael S. Branicky, Mar 18 2024
CROSSREFS
Sequence in context: A213324 A007672 A322255 * A371359 A323615 A204934
KEYWORD
nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 18 2003
EXTENSIONS
Corrected and extended by David Wasserman, Dec 15 2004
STATUS
approved