

A323615


a(0) = 1; for n > 0, a(n) = floor(a(n1)/n) if positive and not already in the sequence, otherwise a(n) = a(n1)*n.


1



1, 1, 2, 6, 24, 4, 24, 3, 24, 216, 21, 231, 19, 247, 17, 255, 15, 255, 14, 266, 13, 273, 12, 276, 11, 275, 10, 270, 9, 261, 8, 248, 7, 231, 7854, 224, 8064, 217, 5, 195, 7800, 190, 7980, 185, 8140, 180, 8280, 176, 8448, 172, 8600, 168, 8736, 164
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Variation on A008336 using floor division and A076039 not allowing for values already in the sequence.


LINKS

Jan Koornstra, Table of n, a(n) for n = 0..10000


EXAMPLE

a(5) = 4, since floor(24/5) = 4, which is positive and not already in the sequence.
a(6) = 24, since floor(4/6) = 0, hence not positive.


MATHEMATICA

Nest[Append[#1, If[And[#3 > 0, FreeQ[#1, #3]], #3, #2 #1[[1]] ]] & @@ {#1, #2, Floor[#1[[1]]/#2]} & @@ {#, Length@ #} &, {1}, 53] (* Michael De Vlieger, Jan 23 2019 *)


PROG

(Python 3)
def a323615(n):
seq = []
for i in range(n + 1):
if i == 0: x = 1
else:
x = seq[i  1] // i
if x in seq or x == 0: x = seq[i  1] * i
seq.append(x)
return seq
print(a323615(100))


CROSSREFS

Cf. A008336, A076039.
Sequence in context: A007672 A322255 A084337 * A204934 A033642 A324528
Adjacent sequences: A323612 A323613 A323614 * A323616 A323617 A323618


KEYWORD

nonn,easy,look


AUTHOR

Jan Koornstra, Jan 20 2019


STATUS

approved



