login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323618
Expansion of e.g.f. (1 + x)*log(1 + x)*(2 + log(1 + x))/2.
0
0, 1, 2, -1, 1, -1, -2, 34, -324, 2988, -28944, 300816, -3371040, 40710240, -528439680, 7348717440, -109109064960, 1723814265600, -28888702617600, 512030734387200, -9572240647065600, 188274945999974400, -3887144020408320000, 84062926436751360000, -1900475323780239360000
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000217(k).
a(n) ~ -(-1)^n * log(n) * n! / n^2 * (1 + (gamma - 2)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 20 2019
a(n) = (5-2*n)*a(n-1) - (n-3)^2*a(n-2) for n >= 4. - Robert Israel, Jan 20 2019
MAPLE
f:= gfun:-rectoproc({a(n) = (5-2*n)*a(n-1) - (n-3)^2*a(n-2), a(0)=0, a(1)=1, a(2)=2, a(3)=-1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 20 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[(1 + x) Log[1 + x] (2 + Log[1 + x])/2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k (k + 1)/2, {k, 0, n}], {n, 0, 24}]
Join[{0, 1, 2, -1}, RecurrenceTable[{a[n]==(5-2*n)*a[n-1]-(n-3)^2*a[n-2], a[2]==2, a[3]==-1}, a, {n, 4, 25}]] (* G. C. Greubel, Feb 07 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(k+1, 2))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
(Magma) [(&+[StirlingFirst(n, k)*Binomial(k+1, 2): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
(Sage) [sum((-1)^(k+n)*stirling_number1(n, k)*binomial(k+1, 2) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Feb 07 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 20 2019
STATUS
approved