login
A246270
Number of prime factors of the form 4k+3 (counted with multiplicity) in A003961(n): a(n) = A065339(A003961(n)).
3
0, 1, 0, 2, 1, 1, 1, 3, 0, 2, 0, 2, 0, 2, 1, 4, 1, 1, 1, 3, 1, 1, 0, 3, 2, 1, 0, 3, 1, 2, 0, 5, 0, 2, 2, 2, 0, 2, 0, 4, 1, 2, 1, 2, 1, 1, 0, 4, 2, 3, 1, 2, 1, 1, 1, 4, 1, 2, 0, 3, 1, 1, 1, 6, 1, 1, 1, 3, 0, 3, 0, 3, 1, 1, 2, 3, 1, 1, 1, 5, 0, 2, 0, 3, 2, 2, 1, 3, 0, 2, 1, 2, 0, 1, 2, 5
OFFSET
1,4
LINKS
FORMULA
a(n) = A065339(A003961(n)).
a(n) = A001222(A246269(n)).
a(n) = A007949(A246269(n)).
Other identities.
If n = u*v, a(n) = a(u)+a(v).
For all n >= 0, a(2^n) = n.
PROG
(PARI)
default(primelimit, 2^22)
A246269(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = (nextprime(f[i, 1]+1)%4)); factorback(f);
A246270(n) = bigomega(A246269(n));
for(n=1, 10080, write("b246270.txt", n, " ", A246270(n)));
(Scheme, two definitions)
(define (A246270 n) (A065339 (A003961 n)))
(define (A246270 n) (A007949 (A246269 n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 21 2014
STATUS
approved