login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377661
Triangle read by rows: T(n, k) = e*Gamma(n - k + 1, 1)*binomial(n, k)^2.
2
1, 2, 1, 5, 8, 1, 16, 45, 18, 1, 65, 256, 180, 32, 1, 326, 1625, 1600, 500, 50, 1, 1957, 11736, 14625, 6400, 1125, 72, 1, 13700, 95893, 143766, 79625, 19600, 2205, 98, 1, 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1
OFFSET
0,2
FORMULA
T(n, k) = binomial(n, k)*Sum_{j=k..n} n!/(k!*(j-k)!).
T(n, k) = binomial(n, k)^2 * KummerU(k - n, k - n, 1).
T(n, k) = binomial(n, k) * A073107(n, k).
EXAMPLE
Triangle starts:
[0] 1;
[1] 2, 1;
[2] 5, 8, 1;
[3] 16, 45, 18, 1;
[4] 65, 256, 180, 32, 1;
[5] 326, 1625, 1600, 500, 50, 1;
[6] 1957, 11736, 14625, 6400, 1125, 72, 1;
[7] 13700, 95893, 143766, 79625, 19600, 2205, 98, 1;
[8] 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1;
MAPLE
T := (n, k) -> exp(1)*GAMMA(n - k + 1, 1)*binomial(n, k)^2:
seq(seq(simplify(T(n, k)), k = 0..n), n=0..8);
# Alternative:
A377661 := (n, k) -> n!*binomial(n, k)*add(1/(k!*(j-k)!), j = k..n):
for n from 0 to 8 do seq(A377661(n, k), k = 0..n) od;
# Or:
T := (n, k) -> binomial(n, k)^2 * KummerU(k - n, k - n, 1):
for n from 0 to 8 do seq(simplify(T(n, k)), k= 0..n) od;
MATHEMATICA
T[n_, k_] := E Binomial[n, k]^2 Gamma[1 - k + n, 1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
PROG
(Python)
from math import comb, isqrt, factorial
def A377661(n):
a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
b = n-comb(a+1, 2)
fa, fb = factorial(a), factorial(b)
return comb(a, b)*sum(fa//(fb*factorial(j-b)) for j in range(b, a+1)) # Chai Wah Wu, Nov 12 2024
CROSSREFS
Cf. A000522 (column 0), A001105 (subdiagonal), A377662 (row sums), A073107.
Sequence in context: A193603 A059274 A082635 * A166623 A348729 A340880
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 03 2024
STATUS
approved