Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 12 2024 20:20:59
%S 1,2,1,5,8,1,16,45,18,1,65,256,180,32,1,326,1625,1600,500,50,1,1957,
%T 11736,14625,6400,1125,72,1,13700,95893,143766,79625,19600,2205,98,1,
%U 109601,876800,1534288,1022336,318500,50176,3920,128,1
%N Triangle read by rows: T(n, k) = e*Gamma(n - k + 1, 1)*binomial(n, k)^2.
%F T(n, k) = binomial(n, k)*Sum_{j=k..n} n!/(k!*(j-k)!).
%F T(n, k) = binomial(n, k)^2 * KummerU(k - n, k - n, 1).
%F T(n, k) = binomial(n, k) * A073107(n, k).
%e Triangle starts:
%e [0] 1;
%e [1] 2, 1;
%e [2] 5, 8, 1;
%e [3] 16, 45, 18, 1;
%e [4] 65, 256, 180, 32, 1;
%e [5] 326, 1625, 1600, 500, 50, 1;
%e [6] 1957, 11736, 14625, 6400, 1125, 72, 1;
%e [7] 13700, 95893, 143766, 79625, 19600, 2205, 98, 1;
%e [8] 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1;
%p T := (n, k) -> exp(1)*GAMMA(n - k + 1, 1)*binomial(n, k)^2:
%p seq(seq(simplify(T(n, k)), k = 0..n), n=0..8);
%p # Alternative:
%p A377661 := (n, k) -> n!*binomial(n,k)*add(1/(k!*(j-k)!), j = k..n):
%p for n from 0 to 8 do seq(A377661(n, k), k = 0..n) od;
%p # Or:
%p T := (n, k) -> binomial(n, k)^2 * KummerU(k - n, k - n, 1):
%p for n from 0 to 8 do seq(simplify(T(n, k)), k= 0..n) od;
%t T[n_, k_] := E Binomial[n, k]^2 Gamma[1 - k + n, 1];
%t Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%o (Python)
%o from math import comb, isqrt, factorial
%o def A377661(n):
%o a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
%o b = n-comb(a+1,2)
%o fa, fb = factorial(a), factorial(b)
%o return comb(a,b)*sum(fa//(fb*factorial(j-b)) for j in range(b,a+1)) # _Chai Wah Wu_, Nov 12 2024
%Y Cf. A000522 (column 0), A001105 (subdiagonal), A377662 (row sums), A073107.
%K nonn,tabl
%O 0,2
%A _Peter Luschny_, Nov 03 2024