login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082635 Square array read by antidiagonals: degree of the K(2,p)^q variety. 0
1, 2, 1, 5, 8, 1, 14, 55, 32, 1, 42, 364, 610, 128, 1, 132, 2380, 9842, 6765, 512, 1, 429, 15504, 147798, 265720, 75025, 2048, 1, 1430, 100947, 2145600, 9112264, 7174454, 832040, 8192, 1, 4862, 657800, 30664890, 290926848, 562110290, 193710244 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Numbers are related to the dynamic pole assignment problem. "The variety K(m,p)^q can also be viewed as the parameterization of the space of rational curves of degree q of the Grassmann variety Grass(m,m+p)".

Also lim(n->inf, T(n+1,2i)/T(n,2i)) = 4^(i+1).

LINKS

Table of n, a(n) for n=1..42.

M. S. Ravi et al., Dynamic pole assignment and Schubert calculus, SIAM J. Control Optimization, 34 (1996), 813-832, esp. p. 825.

FORMULA

degK2(p, q)=(-1)^q*(2p+pq+2q)!*sum(j=0, q, ((q-2j)(p+2)+1)/(p+j(p+2))!/(p+1+(q-j)(p+2))!).

EXAMPLE

Top left corner of array:

1,2,5,14,42,132,429,1430,... A000108 (Catalan numbers)

1,8,55,364,2380,15504,100947,...A013068 deg K(2,n)^1

1,32,610,9842,147798,2145600,...A013069 deg K(2,n)^2

1,128,6765,265720,9112264,... A013070 deg K(2,n)^3

1,512,75025,7174454,... A013071 deg K(2,n)^4

CROSSREFS

Cf. A013702.

Second column is A004171(q), third is A000045(5q).

T(n, 2i) = A080934((i+1)n+2i, n+1).

Sequence in context: A141507 A193603 A059274 * A166623 A094510 A023677

Adjacent sequences:  A082632 A082633 A082634 * A082636 A082637 A082638

KEYWORD

nonn,tabl,easy

AUTHOR

Ralf Stephan, May 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 07:02 EST 2020. Contains 332299 sequences. (Running on oeis4.)