OFFSET
0,2
FORMULA
a(n) = e Sum_{k=0..n} binomial(n, k)^2 * Gamma(n - k + 1, 1).
a(n) = Sum_{k=0..n} binomial(n, k)^2 * KummerU(k - n, k - n, 1), k = 0..n).
a(n) = Sum_{k=0..n} binomial(n, k) * A073107(n, k).
From Vaclav Kotesovec, Nov 07 2024: (Start)
Recurrence: n*(n^2 - 9*n + 12)*a(n) = 2*(n^4 - 7*n^3 - 5*n^2 + 29*n - 12)*a(n-1) - (n-1)*(n^4 - 2*n^3 - 47*n^2 + 104*n - 48)*a(n-2) + 2*(n-2)^2*(2*n - 3)*(n^2 - 7*n + 4)*a(n-3).
a(n) ~ 2^(-1/2) * exp(2*sqrt(n) - n + 1/2) * n^(n + 1/4) * (1 + 31/(48*sqrt(n))). (End)
MAPLE
MATHEMATICA
a[n_] := E Sum[Gamma[n - k + 1, 1] Binomial[n, k]^2, {k, 0, n}];
Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 07 2024
STATUS
approved