login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377662
a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=k..n} n!/(k!*(j - k)!). Row sums of A377661.
2
1, 3, 14, 80, 534, 4102, 35916, 354888, 3915750, 47754938, 637840356, 9256590928, 144977618044, 2436460447020, 43719637179224, 834042701945520, 16852447379512710, 359468276129261730, 8070500634880125300, 190211302604157871680, 4695001374741310892820
OFFSET
0,2
FORMULA
a(n) = e Sum_{k=0..n} binomial(n, k)^2 * Gamma(n - k + 1, 1).
a(n) = Sum_{k=0..n} binomial(n, k)^2 * KummerU(k - n, k - n, 1), k = 0..n).
a(n) = Sum_{k=0..n} binomial(n, k) * A073107(n, k).
From Vaclav Kotesovec, Nov 07 2024: (Start)
Recurrence: n*(n^2 - 9*n + 12)*a(n) = 2*(n^4 - 7*n^3 - 5*n^2 + 29*n - 12)*a(n-1) - (n-1)*(n^4 - 2*n^3 - 47*n^2 + 104*n - 48)*a(n-2) + 2*(n-2)^2*(2*n - 3)*(n^2 - 7*n + 4)*a(n-3).
a(n) ~ 2^(-1/2) * exp(2*sqrt(n) - n + 1/2) * n^(n + 1/4) * (1 + 31/(48*sqrt(n))). (End)
MAPLE
A377662 := n -> add(binomial(n, k)*add(n!/(k!*(j-k)!), j = k..n), k = 0..n):
seq(A377662(n), n = 0..20);
# Or:
a := n -> add(binomial(n, k)^2 * KummerU(k-n, k-n, 1), k = 0..n):
seq(simplify(a(n)), n = 0..20);
MATHEMATICA
a[n_] := E Sum[Gamma[n - k + 1, 1] Binomial[n, k]^2, {k, 0, n}];
Table[a[n], {n, 0, 20}]
CROSSREFS
Sequence in context: A212391 A000264 A009053 * A202474 A347001 A354325
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 07 2024
STATUS
approved