login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=k..n} n!/(k!*(j - k)!). Row sums of A377661.
2

%I #9 Nov 07 2024 09:53:43

%S 1,3,14,80,534,4102,35916,354888,3915750,47754938,637840356,

%T 9256590928,144977618044,2436460447020,43719637179224,834042701945520,

%U 16852447379512710,359468276129261730,8070500634880125300,190211302604157871680,4695001374741310892820

%N a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=k..n} n!/(k!*(j - k)!). Row sums of A377661.

%F a(n) = e Sum_{k=0..n} binomial(n, k)^2 * Gamma(n - k + 1, 1).

%F a(n) = Sum_{k=0..n} binomial(n, k)^2 * KummerU(k - n, k - n, 1), k = 0..n).

%F a(n) = Sum_{k=0..n} binomial(n, k) * A073107(n, k).

%F From _Vaclav Kotesovec_, Nov 07 2024: (Start)

%F Recurrence: n*(n^2 - 9*n + 12)*a(n) = 2*(n^4 - 7*n^3 - 5*n^2 + 29*n - 12)*a(n-1) - (n-1)*(n^4 - 2*n^3 - 47*n^2 + 104*n - 48)*a(n-2) + 2*(n-2)^2*(2*n - 3)*(n^2 - 7*n + 4)*a(n-3).

%F a(n) ~ 2^(-1/2) * exp(2*sqrt(n) - n + 1/2) * n^(n + 1/4) * (1 + 31/(48*sqrt(n))). (End)

%p A377662 := n -> add(binomial(n, k)*add(n!/(k!*(j-k)!), j = k..n), k = 0..n):

%p seq(A377662(n), n = 0..20);

%p # Or:

%p a := n -> add(binomial(n, k)^2 * KummerU(k-n, k-n, 1), k = 0..n):

%p seq(simplify(a(n)), n = 0..20);

%t a[n_] := E Sum[Gamma[n - k + 1, 1] Binomial[n, k]^2, {k, 0, n}];

%t Table[a[n], {n, 0, 20}]

%Y Cf. A377661, A073107.

%K nonn

%O 0,2

%A _Peter Luschny_, Nov 07 2024