login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377665
a(n) = Sum_{j=0..n} binomial(n, j) * Euler(j, 0) * 10^j. Row 5 of A377666.
1
1, -4, -9, 236, 981, -47524, -295029, 20208716, 167213961, -14741279044, -152462570049, 16429489441196, 203906790454941, -25968596099278564, -376012858170009069, 55254540434093713676, 914353480122881739921, -152277985980992039230084, -2834887281233334168196089
OFFSET
0,2
FORMULA
a(n) = 2^(n + 1) * 5^n * (2^(n + 1) * HurwitzZeta(-n, 1/20) - HurwitzZeta(-n, 1/10)).
a(n) = Im(p(n)) where p(n) = 2*i*(1 + Sum_{j=0..n} binomial(n, j)*polylog(-j, i)*5^j.
a(n) = (1/(5*(n+1))) * Sum_{j=0..n+1} Bernoulli(j, 0) * binomial(n+1, j) * (10^j - 20^j).
MAPLE
a := n -> local j; add(binomial(n, j)*euler(j, 0)*10^j, j = 0..n):
# Alternative:
a := n -> add(10^j*(1-2^j)*bernoulli(j)*binomial(n+1, j), j = 0..n+1) / (5*(n+1)):
seq(a(n), n = 0..18);
MATHEMATICA
a[n_] := 5^n (4^(n+1) HurwitzZeta[-n, 1/(20)] - 2^(n + 1) HurwitzZeta[-n, 1/(10)]);
Table[Round[N[a[n], 64]], {n, 0, 18}]
PROG
(SageMath)
from mpmath import *
mp.dps = 32; mp.pretty = True
def a(n): return int(imag(2*I*(1+sum(binomial(n, j)*polylog(-j, I)*5^j for j in range(n+1)))))
print([a(n) for n in range(19)])
CROSSREFS
Cf. A377666.
Sequence in context: A030074 A335723 A299122 * A167657 A175700 A035126
KEYWORD
sign
AUTHOR
Peter Luschny, Nov 13 2024
STATUS
approved