login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377666
Array read by ascending antidiagonals: A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 0) *(2*n)^j.
4
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, 0, 1, 1, -3, -5, 11, 5, 1, 1, -4, -7, 46, 57, 0, 1, 1, -5, -9, 117, 205, -361, -61, 1, 1, -6, -11, 236, 497, -3362, -2763, 0, 1, 1, -7, -13, 415, 981, -15123, -22265, 24611, 1385, 1
OFFSET
0,12
LINKS
Peter Luschny, Generalized Eulerian polynomials. (See last row of the table.)
FORMULA
A(n, k) = n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))) where GHZeta(k, n, m) = m^(k+1) * HurwitzZeta(-k, 1/(m*n)) for n > 0, and T(0, k) = 1.
A(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j.
A(n, k) = substitute(x = -n, P(k, x)) where P(n, x) = (1/(n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j)*x^(j-1).
EXAMPLE
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 0, -1, 0, 5, 0, -61, ... A122045
[2] 1, -1, -3, 11, 57, -361, -2763, ... A212435
[3] 1, -2, -5, 46, 205, -3362, -22265, ... A225147
[4] 1, -3, -7, 117, 497, -15123, -95767, ... A156201
[5] 1, -4, -9, 236, 981, -47524, -295029, ... A377665
[6] 1, -5, -11, 415, 1705, -120125, -737891, ...
[7] 1, -6, -13, 666, 2717, -262086, -1599793, ...
MAPLE
GHZeta := (k, n, m) -> m^(k+1)*Zeta(0, -k, 1/(m*n)):
A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))):
for n from 0 to 7 do lprint(seq(A(n, k), k = 0..7)) od;
# Alternative:
P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:
A := n -> Im(P(n, k)): seq(lprint(seq(A(n, k), k = 0..7)), n = 0..7);
# Computing the transpose using polynomials P from A363393.
P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1)/(n + 1):
Column := (k, n) -> subs(x = -n, P(k)):
for k from 0 to 6 do seq(Column(k, n), n = 0..9) od;
# According to the definition:
A := (n, k) -> local j; add(binomial(k, j)*euler(j, 0)*(2*n)^j, j = 0..k):
seq(lprint(seq(A(n, k), k = 0..6)), n = 0..7);
MATHEMATICA
A[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);
PROG
(SageMath)
from mpmath import *
mp.dps = 32; mp.pretty = True
def T(n, k):
p = 2*I*(1+sum(binomial(k, j)*polylog(-j, I)*n^j for j in range(k+1)))
return int(imag(p))
for n in range(8): print([T(n, k) for k in range(7)])
CROSSREFS
Cf. A377663 (column 3), A377664 (main diagonal), A363393 (column polynomials).
Sequence in context: A370292 A243081 A287847 * A336201 A271369 A308322
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 05 2024
STATUS
approved