OFFSET
0,12
LINKS
Peter Luschny, Generalized Eulerian polynomials. (See last row of the table.)
FORMULA
A(n, k) = n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))) where GHZeta(k, n, m) = m^(k+1) * HurwitzZeta(-k, 1/(m*n)) for n > 0, and T(0, k) = 1.
A(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j.
A(n, k) = substitute(x = -n, P(k, x)) where P(n, x) = (1/(n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j)*x^(j-1).
EXAMPLE
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 0, -1, 0, 5, 0, -61, ... A122045
[2] 1, -1, -3, 11, 57, -361, -2763, ... A212435
[3] 1, -2, -5, 46, 205, -3362, -22265, ... A225147
[4] 1, -3, -7, 117, 497, -15123, -95767, ... A156201
[5] 1, -4, -9, 236, 981, -47524, -295029, ... A377665
[6] 1, -5, -11, 415, 1705, -120125, -737891, ...
[7] 1, -6, -13, 666, 2717, -262086, -1599793, ...
MAPLE
GHZeta := (k, n, m) -> m^(k+1)*Zeta(0, -k, 1/(m*n)):
A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))):
for n from 0 to 7 do lprint(seq(A(n, k), k = 0..7)) od;
# Alternative:
P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end:
A := n -> Im(P(n, k)): seq(lprint(seq(A(n, k), k = 0..7)), n = 0..7);
# Computing the transpose using polynomials P from A363393.
P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1)/(n + 1):
Column := (k, n) -> subs(x = -n, P(k)):
for k from 0 to 6 do seq(Column(k, n), n = 0..9) od;
# According to the definition:
A := (n, k) -> local j; add(binomial(k, j)*euler(j, 0)*(2*n)^j, j = 0..k):
seq(lprint(seq(A(n, k), k = 0..6)), n = 0..7);
MATHEMATICA
A[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);
PROG
(SageMath)
from mpmath import *
mp.dps = 32; mp.pretty = True
def T(n, k):
p = 2*I*(1+sum(binomial(k, j)*polylog(-j, I)*n^j for j in range(k+1)))
return int(imag(p))
for n in range(8): print([T(n, k) for k in range(7)])
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 05 2024
STATUS
approved