login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156201
Numerator of Euler(n, 1/8).
3
1, -3, -7, 117, 497, -15123, -95767, 4116837, 34741217, -1921996323, -20273087527, 1370953667157, 17352768515537, -1386843017916723, -20479521468959287, 1888542637550347077, 31872138933891307457, -3331009898404800736323, -63243057486503656319047
OFFSET
0,2
FORMULA
a(n) = Im(2*i*(1+Sum_{j=0..n} (binomial(n,j)*Li_{-j}(i)*4^j))). - Peter Luschny, Apr 29 2013
G.f.: conjecture T(0)/(1+3*x), where T(k) = 1 - 16*x^2*(k+1)^2/(16*x^2*(k+1)^2 + (1+3*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = (-4)^n*skp(n, 3/4), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
a(n) = 2^(4*n+1)*(zeta(-n,1/16)-zeta(-n, 9/16)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
From Emanuele Munarini, Aug 22 2022: (Start)
E.g.f.: (2*e^t)/(e^(8*t)+1).
E.g.f. for the sequence of the absolute values: (cos(3*t)+sin(3*t))/cos(4*t).
|a(2*n)| = Sum_{k=0..n} binomial(2*n,2*k) (-1)^k 4^(2*n-2*k) 3^(2*k) |E(2*n-2k)|
|a(2*n+1)| = Sum_{k=0..n} binomial(2*n+1,2*k+1) (-1)^k 4^(2*n-2*k) 3^(2*k+1) |E(2*n-2*k)|
where the E(n)'s are the Euler numbers (A122045).
(End)
MAPLE
p := proc(n) local j; 2*I*(1+add(binomial(n, j)*polylog(-j, I)*4^j, j=0..n)) end: A156201 := n -> Im(p(n));
seq(A156201(i), i=0..10); # Peter Luschny, Apr 29 2013
MATHEMATICA
Table[EulerE[n, 1/8] // Numerator, {n, 0, 18}] (* Jean-François Alcover, Apr 30 2013 *)
CROSSREFS
For denominators see A001018. Cf. A000813.
Sequence in context: A289629 A015884 A224936 * A066771 A139159 A042329
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 07 2009
STATUS
approved