|
|
A156204
|
|
First primes of an arithmetic progression of six primes with common difference 30.
|
|
8
|
|
|
7, 107, 359, 541, 2221, 6673, 7457, 10103, 25643, 26861, 27337, 35051, 56149, 61553, 65557, 73523, 84317, 110819, 115733, 131581, 135151, 137447, 179321, 228587, 243553, 252163, 279421, 281717, 310711, 320119, 337367, 345487, 347167, 357079
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
After the first term, all terms are congruent to 9 (mod 14). Gaps of 14 occur at a(n) = 22037759, 400852853, ... - Zak Seidov, Aug 01 2013
Note that a(n)+6*30 is composite for all n: a(1)+180 is divisible by 11 and for n>1 a(n)+180 is divisible by 7. - Zak Seidov, Apr 11 2015
|
|
LINKS
|
|
|
MAPLE
|
for n from 1 to 60000 do p := ithprime(n) ; if isprime(p+30) and isprime(p+60) and isprime(p+90) and isprime(p+120) and isprime(p+150) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Feb 07 2009
|
|
MATHEMATICA
|
Select[Range[360000], PrimeQ[#] && PrimeQ[# + 30] && PrimeQ[# + 60] && PrimeQ[# + 90] && PrimeQ[# + 120] && PrimeQ[# + 150] &] (* Vincenzo Librandi, Apr 13 2015 *)
|
|
PROG
|
(PARI) is_A156204(n) = isprime(n) && isprime(n+30) && isprime(n+60) && isprime(n+90) && isprime(n+120) && isprime(n+150) \\ Michael B. Porter, Aug 01 2013
(Magma) [p: p in PrimesUpTo(360000)| IsPrime(p+30) and IsPrime(p+60) and IsPrime(p+90)and IsPrime(p+120)and IsPrime(p+150)]; // Vincenzo Librandi, Apr 13 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|