|
|
A066771
|
|
a(n) = 5^n*cos(2*n*arctan(1/2)) or denominator of tan(2*n*arctan(1/2)).
|
|
12
|
|
|
1, 3, -7, -117, -527, -237, 11753, 76443, 164833, -922077, -9653287, -34867797, 32125393, 1064447283, 5583548873, 6890111163, -98248054847, -761741108157, -2114245277767, 6358056037323, 91004468168113, 387075408075603, 47340744250793, -9392840736385317
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Let A =
[ -3/5 -(2/5)i, -(2/5)i, -(2/5)i, -(2/5)i ]
[ -(2/5)i, -3/5 +(2/5)i, -(2/5)i, (2/5)i ]
[ -(2/5)i, -(2/5)i, -3/5 +(2/5)i, (2/5)i ]
[ -(2/5)i, (2/5)i, (2/5)i, -3/5 -(2/5)i ]
be the Cayley transform of the matrix iH, where H =
[1, 1, 1, 1]
[1, -1, 1, -1]
[1, 1, -1, -1]
[1, -1, -1, 1]
is a Hadamard matrix of order 4 and i is the imaginary unit. Any diagonal entry of the matrix A^n is one of the four complex numbers (+ or -)(X/5^n)(+ or -)(Y/(5^n)i). Then a(n) is the X in [A^n]_(j,j), j=1,2,3,4. - Simone Severini, Apr 28 2004
Related to the (3,4,5) Pythagorean triple. Each unsigned term represents a leg in a Pythagorean triple in which the hypotenuse = 5^n. E.g., (3 + 4i)^3 = (-117 + 44i), considered as two legs of a triangle, hypotenuse = 125 = 5^3. - Gary W. Adamson, Aug 06 2006
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: ( 1-3*x ) / ( 1-6*x+25*x^2 ).
A recursive formula for T(n) = tan(2*n*arctan(1/2)) is T(n+1) = (4/3 + T(n))/(1 - (4/3)*T(n)). Unsigned A(n) is the absolute value of the denominator of T(n).
a(n) is the real part of (2+i)^(2n) = Sum_{k=0..n} 4^(n-k)*(-1)^k*C(2n, 2k). - Benoit Cloitre, Aug 03 2002
|
|
MAPLE
|
a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(denom(a[n])), n=1..40); # a[n]=tan(2n arctan(1/2))
|
|
MATHEMATICA
|
CoefficientList[Series[(1-3x)/(1-6x+25x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -25}, {1, 3}, 30] (* Harvey P. Dale, Jul 16 2011 *)
|
|
PROG
|
(PARI) a(n)=real((2+I)^(2*n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy,frac
|
|
AUTHOR
|
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
|
|
STATUS
|
approved
|
|
|
|