OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Peter Luschny, Generalized Eulerian polynomials.
FORMULA
a(n) = Im(-2*i*(1+Sum_{j=0..n}(binomial(n,j)*Li{-j}(i)*3^j))).
For a recurrence see the Maple program.
G.f.: conjecture -T(0)/(1+2*x), where T(k) = 1 - 9*x^2*(k+1)^2/(9*x^2*(k+1)^2 + (1+2*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = -(-3)^n*skp(n, 2/3), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
G.f.: A225147 = -1/T(0), where T(k) = 1 + 2*x + (k+1)^2*(3*x)^2/ T(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 29 2014
E.g.f.: -exp(-2*x)*sech(3*x). - Sergei N. Gladkovskii, Sep 29 2014
a(n) ~ n! * (sqrt(3)*sin(Pi*n/2) - cos(Pi*n/2)) * 2^(n+1) * 3^n / Pi^(n+1). - Vaclav Kotesovec, Sep 29 2014
From Peter Bala, Nov 13 2016: (Start)
a(n) = - 6^n*E(n,1/6), where E(n,x) denotes the Euler polynomial of order n.
MAPLE
B := proc(n, u, k) option remember;
if n = 1 then if (u < 0) or (u >= 1) then 0 else 1 fi
else k*u*B(n-1, u, k) + k*(n-u)*B(n-1, u-1, k) fi end:
EulerianPolynomial := proc(n, k, x) local m; if x = 0 then RETURN(1) fi;
add(B(n+1, m+1/k, k)*u^m, m = 0..n); subs(u=x, %) end:
seq(Im((1-I)^(1-n)*EulerianPolynomial(n, 3, I)), n=0..19);
MATHEMATICA
CoefficientList[Series[-E^(-2*x)*Sech[3*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2014 after Sergei N. Gladkovskii *)
Table[-6^n EulerE[n, 1/6], {n, 0, 19}] (* Peter Luschny, Nov 16 2016 after Peter Bala *)
PROG
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Luschny, Apr 30 2013
STATUS
approved