login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023273
Primes that remain prime through 3 iterations of function f(x) = 2x + 3.
2
2, 5, 47, 67, 97, 137, 197, 277, 307, 607, 617, 1307, 1427, 2857, 5717, 6047, 6217, 6257, 6997, 9377, 9787, 9967, 11197, 12097, 13297, 13997, 14347, 16057, 18757, 18947, 20887, 21517, 21587, 21757, 24197, 26227, 28097, 28447, 32117, 33767, 34367, 35117
OFFSET
1,1
COMMENTS
Primes p such that 2*p+3, 4*p+9 and 8*p+21 are also primes. - Vincenzo Librandi, Aug 04 2010
LINKS
MATHEMATICA
Select[Prime[Range[5000]], AllTrue[Rest[NestList[2#+3&, #, 3]], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 01 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(50000) | IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(8*p+21)]; // Vincenzo Librandi, Aug 04 2010
(Python)
from sympy import prime, isprime
A023273_list = [p for p in (prime(n) for n in range(1, 10**2)) if isprime(2*p+3) and isprime(4*p+9) and isprime(8*p+21)] # Chai Wah Wu, Sep 09 2014
(PARI) isok(n)=isprime(n) && isprime(2*n+3) && isprime(4*n+9) && isprime(8*n+21) \\ Edward Jiang, Sep 09 2014
CROSSREFS
Sequence in context: A225147 A119715 A326965 * A041729 A078665 A163666
KEYWORD
nonn
STATUS
approved