login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023276
Primes that remain prime through 3 iterations of function f(x) = 2x + 9.
1
5, 11, 31, 71, 281, 521, 911, 1181, 2371, 2521, 3391, 3701, 4211, 4931, 5051, 7211, 7411, 8221, 8431, 8461, 8501, 8641, 8951, 9601, 9871, 10301, 11981, 12421, 13121, 13921, 14591, 16381, 16451, 16901, 16931, 17791, 17881, 19391, 19751, 21991, 23021
OFFSET
1,1
COMMENTS
Primes p such that 2*p+9, 4*p+27 and 8*p+63 are also primes. - Vincenzo Librandi, Aug 04 2010
FORMULA
a(n) == 1 (mod 10) for n > 1. - John Cerkan, Sep 16 2016
MAPLE
A023276:=n->`if`(isprime(n) and isprime(2*n+9) and isprime(4*n+27) and isprime(8*n+63), n, NULL): seq(A023276(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
MATHEMATICA
Select[Prime@ Range@ 2600, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 9 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
Select[Prime[Range[3000]], AllTrue[Rest[NestList[2#+9&, #, 3]], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 01 2017 *)
PROG
(Magma) [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+9) and IsPrime(4*n+27) and IsPrime(8*n+63)] // Vincenzo Librandi, Aug 04 2010
(PARI) is(n)=isprime(n) && isprime(2*n+9) && isprime(4*n+27) && isprime(8*n+63) \\ Charles R Greathouse IV, Sep 20 2016
CROSSREFS
Subsequence of A023207, A023245, and of A155722.
Sequence in context: A106088 A246010 A077446 * A074648 A236428 A106908
KEYWORD
nonn
STATUS
approved