login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077446 Numbers n such that 2*n^2 + 14 is a square. 6
1, 5, 11, 31, 65, 181, 379, 1055, 2209, 6149, 12875, 35839, 75041, 208885, 437371, 1217471, 2549185, 7095941, 14857739, 41358175, 86597249, 241053109, 504725755, 1404960479, 2941757281, 8188709765, 17145817931, 47727298111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The equation "2*n^2 + 14 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = 14.

Numbers n such that (ceiling(sqrt(n*n/2)))^2 = (7+n^2)/2. - Ctibor O. Zizka, Nov 09 2009

From Wolfdieter Lang, Feb 26 2015: (Start)

This sequence gives all positive solutions x = a(n+1), n >= 0, of the Pell equation x^2 - 2*y^2 = -7. For the corresponding y-solutions see y(n) = 2*A006452(n+2) = A077447(n+1)/2. This implies that X^2 - 2*Y^2 = 14 has the general solutions (X(n),Y(n)) = (2*y(n), x(n)). See the first comment above.

For the positive first class solutions see (A054490(n), 2*A038723(n)) and for the second class solutions (A255236(n), 2*A038725(n+1)). (End)

For n > 0, a(n) is the n-th almost Lucas-balancing number of second type (see Tekcan and Erdem). - Stefano Spezia, Nov 26 2022

REFERENCES

A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.

L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.

Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..2612

Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.

Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.

J. J. O'Connor and E. F. Robertson, Pell's Equation

Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.

Eric Weisstein's World of Mathematics, Pell Equation

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

2*(a(n))^2 + 14 = (A077447(n))^2.

Lim. n-> Inf. a(n)/a(n-2) = 5.8284271247461... = 3 + 2*sqrt(2) = A156035 = RG (Great Ratio).

Lim. k-> Inf. a(2*k+1)/a(2*k) = 2.09383632135605... = (9 + 4*sqrt(2))/7 = A156649 = R1 (Ratio 1).

Lim. k -> Inf. a(2*k)/a(2*k-1) = 2.78361162489122432754 = (11 + 6*sqrt(2))/7 = R2 (Ratio 2); RG = R1*R2.

a(2*k-1) = [ 2*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] - [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] + [(3+2*Sqrt(2))^(n-2) - (3-2*Sqrt(2))^(n-2)] ] / (4*Sqrt(2)) a(2*k) = [ 5*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] + [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] ] / (4*Sqrt(2)).

a(n) = 6*a(n-2) - a(n-4).

G.f.: x*(1+x)*(x^2+4*x+1) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Jul 03 2011

a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=5, a(3)=11, a(4)=31. - Sture Sjöstedt, Oct 08 2012

Bisection: a(2*k+1) = S(k, 6) + 5*S(k-1, 6), a(2*k) = 5*S(n-1, 6) + S(n-2, 6), with the Chebyshev polynomials S(n, x) (A049310) with S(-2, x) = -1, S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1). See A054490 and A255236, and the given g.f.s. - Wolfdieter Lang, Feb 26 2015

E.g.f.: 1 - cosh(sqrt(2)*x)*(cosh(x) - 3*sinh(x)) - sqrt(2)*(cosh(x) - 2*sinh(x))*sinh(sqrt(2)*x). - Stefano Spezia, Nov 26 2022

EXAMPLE

n = 3: (A077447(3))^2 - 2*a(3)^2 = 16^2 - 2*11^2 = 14;

a(3)^2 - 2*(2*A006452(3+1))^2 = 11^2 - 2*(2*4)^2 = -7. - Wolfdieter Lang, Feb 26 2015

MATHEMATICA

LinearRecurrence[{0, 6, 0, -1}, {1, 5, 11, 31}, 50] (* Sture Sjöstedt, Oct 08 2012 *)

CROSSREFS

Cf. A001109, A006452, A038723, A038725, A049310, A054490, A077447, A155765, A156035, A156649, A255236.

Sequence in context: A038580 A106088 A246010 * A023276 A074648 A236428

Adjacent sequences: A077443 A077444 A077445 * A077447 A077448 A077449

KEYWORD

nonn,easy,changed

AUTHOR

Gregory V. Richardson, Nov 09 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)