OFFSET
0,2
COMMENTS
This sequence gives one half of all positive solutions y = y1 = a(n) of the first class of the Pell equation x^2 - 2*y^2 = -7. For the corresponding x=x1 terms see A054490(n). Therefore it also gives one fourth of all positive solutions x = x1 of the first class of the Pell equation x^2 - 2*y^2 = 14, with the y=y1 terms given by A054490. - Wolfdieter Lang, Feb 26 2015
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(n) = ((4+sqrt(2))/8)*(3+2*sqrt(2))^(n-1) + ((4-sqrt(2))/8)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Mar 29 2008
Sequence satisfies -7 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 6*u*v. - Michael Somos, Sep 28 2008
G.f.: (1 - 2*x) / (1 - 6*x + x^2). a(n) = (7 + a(n-1)^2) / a(n-2). - Michael Somos, Sep 28 2008
a(n) = Sum_{k = 0..n} A238731(n,k)*3^k. - Philippe Deléham, Mar 05 2014
a(n) = S(n,6) - 2*S(n-1, 6), n >= 0, with the Chebyshev polynomials S(n, x) (A049310) with S(-1, x) = 0 evaluated at x = 6. S(n, 6) = A001109(n-1). See the g.f. and the Pell comment above. - Wolfdieter Lang, Feb 26 2015
a(0) = -(A038761(0) - A038762(0))/2, a(n) = (A253811(n-1) + A101386(n-1))/2, n >= 1. See the Mar 19 2015 comment on A054490. - Wolfdieter Lang, Mar 19 2015
E.g.f.: exp(3*x)*(4*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Apr 30 2020
EXAMPLE
n = 2: A054490(2)^2 - 2*(2*a(2))^2 =
65^2 - 2*(2*23)^2 = -7,
(4*a(2))^2 - 2*A054490(2)^2 =
(4*23)^2 - 2*65^2 = 14. - Wolfdieter Lang, Feb 26 2015
MAPLE
a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
LinearRecurrence[{6, -1}, {1, 4}, 30] (* Harvey P. Dale, Aug 06 2020 *)
PROG
(PARI) {a(n) = real((3 + 2*quadgen(8))^n * (1 + quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
(PARI) {a(n) = polchebyshev(n, 1, 3) + polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 02 2000
EXTENSIONS
More terms from James A. Sellers, May 03 2000
STATUS
approved