login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041729
Denominators of continued fraction convergents to sqrt(384).
2
1, 1, 2, 5, 47, 99, 146, 245, 9456, 9701, 19157, 48015, 451292, 950599, 1401891, 2352490, 90796511, 93149001, 183945512, 461040025, 4333305737, 9127651499, 13460957236, 22588608735, 871828089166, 894416697901, 1766244787067, 4426906272035, 41608401235382
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,9602,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^14 -x^13 +2*x^12 -5*x^11 +47*x^10 -99*x^9 +146*x^8 -245*x^7 -146*x^6 -99*x^5 -47*x^4 -5*x^3 -2*x^2 -x -1) / ((x^4 -4*x^3 +8*x^2 +4*x +1)*(x^4 -10*x^2 +1)*(x^4 +10*x^2 +1)*(x^4 +4*x^3 +8*x^2 -4*x +1)). - Colin Barker, Nov 22 2013
a(n) = 9602*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 23 2013
MAPLE
convert(sqrt(384), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[384], 30]] (* Vincenzo Librandi, Dec 23 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 9602, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 2, 5, 47, 99, 146, 245, 9456, 9701, 19157, 48015, 451292, 950599, 1401891, 2352490}, 40] (* Harvey P. Dale, May 26 2018 *)
CROSSREFS
Sequence in context: A119715 A326965 A023273 * A078665 A163666 A093552
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 22 2013
STATUS
approved