login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041729 Denominators of continued fraction convergents to sqrt(384). 2
1, 1, 2, 5, 47, 99, 146, 245, 9456, 9701, 19157, 48015, 451292, 950599, 1401891, 2352490, 90796511, 93149001, 183945512, 461040025, 4333305737, 9127651499, 13460957236, 22588608735, 871828089166, 894416697901, 1766244787067, 4426906272035, 41608401235382 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,9602,0,0,0,0,0,0,0,-1).

FORMULA

G.f.: -(x^14 -x^13 +2*x^12 -5*x^11 +47*x^10 -99*x^9 +146*x^8 -245*x^7 -146*x^6 -99*x^5 -47*x^4 -5*x^3 -2*x^2 -x -1) / ((x^4 -4*x^3 +8*x^2 +4*x +1)*(x^4 -10*x^2 +1)*(x^4 +10*x^2 +1)*(x^4 +4*x^3 +8*x^2 -4*x +1)). - Colin Barker, Nov 22 2013

a(n) = 9602*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 23 2013

MAPLE

convert(sqrt(384), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013

MATHEMATICA

Denominator[Convergents[Sqrt[384], 30]] (* Vincenzo Librandi, Dec 23 2013 *)

LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 9602, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 2, 5, 47, 99, 146, 245, 9456, 9701, 19157, 48015, 451292, 950599, 1401891, 2352490}, 40] (* Harvey P. Dale, May 26 2018 *)

CROSSREFS

Cf. A041728, A040364.

Sequence in context: A119715 A326965 A023273 * A078665 A163666 A093552

Adjacent sequences:  A041726 A041727 A041728 * A041730 A041731 A041732

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Nov 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 22:32 EDT 2020. Contains 337315 sequences. (Running on oeis4.)