login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000810
Expansion of e.g.f. (sin x + cos x)/cos 3x.
4
1, 1, 8, 26, 352, 1936, 38528, 297296, 7869952, 78098176, 2583554048, 31336418816, 1243925143552, 17831101321216, 825787662368768, 13658417358350336, 722906928498737152, 13551022195053101056
OFFSET
0,3
LINKS
FORMULA
a(2n) = A000436(n).
(-1)^n*a(2n+1)=1-sum_{i=0,1,...,n-1} (-1)^i*binomial(2n+1,2i+1)*3^(2n-2i)*a(2i+1). - R. J. Mathar, Nov 19 2006
a(n) = | 3^n*2^(n+1)*lerchphi(-1,-n,1/3) |. - Peter Luschny, Apr 27 2013
a(n) ~ n!*2^(n+1)*3^(n+1/2)/Pi^(n+1) if n is even and a(n) ~ n!*2^(n+1)*3^n/Pi^(n+1) if n is odd. - Vaclav Kotesovec, Jun 25 2013
a(n) = (-1)^floor(n/2)*3^n*skp(n, 1/3), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
MATHEMATICA
CoefficientList[Series[(Sin[x]+Cos[x])/Cos[3*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 25 2013 *)
Table[Abs[EulerE[n, 1/3]] 6^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 21 2015 *)
PROG
(Sage)
from mpmath import mp, lerchphi
mp.dps = 32; mp.pretty = True
def A000810(n): return abs(3^n*2^(n+1)*lerchphi(-1, -n, 1/3))
[int(A000810(n)) for n in (0..17)] # Peter Luschny, Apr 27 2013
(PARI) x='x+O('x^66); v=Vec(serlaplace( (sin(x)+cos(x)) / cos(3*x) ) ) \\ Joerg Arndt, Apr 27 2013
CROSSREFS
(-1)^(n*(n-1)/2)*a(n) gives the alternating row sums of A225118. - Wolfdieter Lang, Jul 12 2017
Sequence in context: A089064 A240291 A203635 * A171740 A129663 A112646
KEYWORD
nonn
STATUS
approved