The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212435 Expansion of e.g.f.: exp(-x) / cosh(2*x). 9
 1, -1, -3, 11, 57, -361, -2763, 24611, 250737, -2873041, -36581523, 512343611, 7828053417, -129570724921, -2309644635483, 44110959165011, 898621108880097, -19450718635716001, -445777636063460643, 10784052561125704811, 274613643571568682777 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: 2 * exp(x) / (exp(4*x) + 1). E.g.f. is the reciprocal of the e.g.f. of A046717. a(n) = (-1)^n * A188458(n) = (-1)^floor((n + 1) / 2) * A001586(n). E.g.f.: 2/E(0), where E(k) = 1 + (-1)^k/(3^k - 3*9^k*x/(3*3^k*x + (-1)^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013 G.f.: conjecture T(0)/(1+x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 + (1+ x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013 a(n) ~ n! * (cos(Pi*n/2)-sin(Pi*n/2)) * 2^(2*n+3/2) / Pi^(n+1). - Vaclav Kotesovec, Feb 25 2014 From Peter Bala, Mar 10 2015: (Start) a(n) = 4^n*E(n,1/4). O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - x*(4*k + 1)). The series expansion exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 - x - x^2 + 5*x^3 + 11*x^4 - 91*x^5 - 391*x^6 + ... appears to have integer coefficients. Cf. A188514, A255883. (End) EXAMPLE G.f. = 1 - x - 3*x^2 + 11*x^3 + 57*x^4 - 361*x^5 - 2763*x^6 + 24611*x^7 + ... MAPLE a:=series(exp(-x)/cosh(2*x), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 27 2019 MATHEMATICA CoefficientList[Series[2*E^x/(E^(4*x)+1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / Cosh[ 2 x], {x, 0, n}]]; (* Michael Somos, Aug 26 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( exp(-x + A) / cosh( 2*x + A), n))}; (Sage) @CachedFunction def p(n, x) :     if n == 0 : return 1     w = -1 if n%2 == 0 else  0     v =  1 if n%2 == 0 else -1     return v*add(p(k, 0)*binomial(n, k)*(x^(n-k)+w) for k in range(n)[::2]) def A212435(n) : return 2^n*p(n, 1/2) [A212435(n) for n in (0..20)]  # Peter Luschny, Jul 19 2012 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x)/Cosh(2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 10 2018 CROSSREFS Cf. A001586, A046717, A188458, A188514, A255883. Sequence in context: A330351 A180112 A188458 * A001586 A126201 A261643 Adjacent sequences:  A212432 A212433 A212434 * A212436 A212437 A212438 KEYWORD sign AUTHOR Michael Somos, Jun 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 18:46 EDT 2021. Contains 346376 sequences. (Running on oeis4.)