login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261643
a(n) = Sum_{k=1..n} (k^2 + k)^(n-k).
1
1, 3, 11, 57, 397, 3487, 37519, 484437, 7353473, 129104523, 2589967603, 58757627185, 1493762354293, 42223299711159, 1318186323111959, 45185985199663629, 1691822823829309801, 68865092213424362659, 3034735030143197197435, 144238580771432519823465, 7368717925255301486594525
OFFSET
1,2
COMMENTS
Row sums of triangle A261642.
FORMULA
a(n)^(1/n) ~ n^2/(exp(2)*LambertW(n)^2). - Vaclav Kotesovec, Aug 28 2015
EXAMPLE
Initial terms begin:
a(1) = 2^0 = 1;
a(2) = 2^1 + 6^0 = 3;
a(3) = 2^2 + 6^1 + 12^0 = 11;
a(4) = 2^3 + 6^2 + 12^1 + 20^0 = 57;
a(5) = 2^4 + 6^3 + 12^2 + 20^1 + 30^0 = 397;
a(6) = 2^5 + 6^4 + 12^3 + 20^2 + 30^1 + 42^0 = 3487; ...
MATHEMATICA
Table[Sum[(k^2+k)^(n-k), {k, n}], {n, 30}] (* Harvey P. Dale, Aug 23 2021 *)
PROG
(PARI) {a(n) = sum(k=1, n, (k + k^2)^(n-k))}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A261642.
Sequence in context: A212435 A001586 A126201 * A229512 A208990 A020012
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2015
STATUS
approved