login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261642
Triangle, read by rows, where T(n,k) = (k^2 + k)^(n-k) for k=1..n and n>=1.
2
1, 2, 1, 4, 6, 1, 8, 36, 12, 1, 16, 216, 144, 20, 1, 32, 1296, 1728, 400, 30, 1, 64, 7776, 20736, 8000, 900, 42, 1, 128, 46656, 248832, 160000, 27000, 1764, 56, 1, 256, 279936, 2985984, 3200000, 810000, 74088, 3136, 72, 1, 512, 1679616, 35831808, 64000000, 24300000, 3111696, 175616, 5184, 90, 1
OFFSET
1,2
COMMENTS
Matrix inverse of triangle P with element P(n,k) = (-1)^(n-k) * (k^2 + k)^(n-k) / (n-k)! forms triangle A103244.
EXAMPLE
This triangle begins:
1;
2, 1;
4, 6, 1;
8, 36, 12, 1;
16, 216, 144, 20, 1;
32, 1296, 1728, 400, 30, 1;
64, 7776, 20736, 8000, 900, 42, 1;
128, 46656, 248832, 160000, 27000, 1764, 56, 1;
256, 279936, 2985984, 3200000, 810000, 74088, 3136, 72, 1;
512, 1679616, 35831808, 64000000, 24300000, 3111696, 175616, 5184, 90, 1;
1024, 10077696, 429981696, 1280000000, 729000000, 130691232, 9834496, 373248, 8100, 110, 1; ...
PROG
(PARI) {T(n, k) = (k^2 + k)^(n-k)}
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A103244, A261643 (row sums).
Sequence in context: A346905 A075497 A158983 * A185947 A268472 A079474
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 27 2015
STATUS
approved