OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(2*z) - 1)*x/2) - 1.
Subtriangle of (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 13 2013
Also the inverse Bell transform of the double factorial of even numbers Product_ {k=0..n-1} (2*k+2) (A000165). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Peter Bala, The white diamond product of power series
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
Wolfdieter Lang, First 10 rows.
Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
Emanuele Munarini, Characteristic, admittance and matching polynomials of an antiregular graph Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
FORMULA
a(n, m) = (2^(n-m)) * Stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*2)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 2*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-2*k*x), m >= 1.
E.g.f. for m-th column: (((exp(2*x)-1)/2)^m)/m!, m >= 1.
The row polynomials in t are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A008277. - Peter Bala, Nov 25 2011
From Peter Bala, Jan 13 2018: (Start)
n-th row polynomial R(n,x)= x o x o ... o x (n factors), where o is the deformed Hadamard product of power series defined in Bala, section 3.1.
R(n+1,x)/x = (x + 2) o (x + 2) o...o (x + 2) (n factors).
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(n-k)*R(k,x).
Dobinski-type formulas: R(n,x) = exp(-x/2)*Sum_{i >= 0} (2*i)^n* (x/2)^i/i!; 1/x*R(n+1,x) = exp(-x/2)*Sum_{i >= 0} (2 + 2*i)^n* (x/2)^i/i!. (End)
EXAMPLE
[1];[2,1];[4,6,1]; ...; p(3,x) = x*(4 + 6*x + x^2).
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1
0, 1
0, 2, 1
0, 4, 6, 1
0, 8, 28, 12, 1
0, 16, 120, 100, 20, 1. - Philippe Deléham, Feb 13 2013
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Aug 13 2015
# Alternatively, giving the triangle in the form displayed in the Example section:
gf := exp(x*exp(z)*sinh(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
MATHEMATICA
Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
PROG
(Sage) # uses[inverse_bell_transform from A265605]
multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
(PARI)
for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved