login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075498 Stirling2 triangle with scaled diagonals (powers of 3). 14
1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.

The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(3*z) - 1)*x/3) - 1.

Subtriangle of the triangle given by (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938, see example. - Philippe Deléham, Feb 13 2013

Also the Bell transform of A000244. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

FORMULA

a(n, m) = (3^(n-m)) * stirling2(n, m).

a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*3)^(n-m))/(m-1)! for n >= m >= 1, else 0.

a(n, m) = 3*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.

G.f. for m-th column: (x^m)/Product_{k=1..m}(1-3*k*x), m >= 1.

E.g.f. for m-th column: (((exp(3*x)-1)/3)^m)/m!, m >= 1.

From Peter Bala, Jan 13 2018: (Start)

Dobinski-type formulas for row polynomials R(n,x):

R(n,x) = exp(-x/3)*Sum_{i >= 0} (3*i)^n* (x/3)^i/i!;

R(n+1,x) = x*exp(-x/3)*Sum_{i >= 0} (3 + 3*i)^n* (x/3)^i/i!.

R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*3^(n-k)*R(k,x).(End)

EXAMPLE

[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).

From Philippe Deléham, Feb 13 2013: (Start)

Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:

  1;

  0,   1;

  0,   3,   1;

  0,   9,   9,   1;

  0,  27,  63,  18,   1;

  0,  81, 405, 225,  30,   1;

(End)

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016

MATHEMATICA

Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)

rows = 9;

t = Table[3^n, {n, 0, rows}];

T[n_, k_] := BellY[n, k, t];

Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

PROG

(PARI) for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017

CROSSREFS

Columns 1-7 are A000244, A016137, A017933, A028085, A075515, A075516, A075906. Row sums are A004212.

Cf. A075497, A075499.

Sequence in context: A078416 A223533 A021973 * A105729 A104750 A342355

Adjacent sequences:  A075495 A075496 A075497 * A075499 A075500 A075501

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Oct 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 00:05 EST 2022. Contains 350515 sequences. (Running on oeis4.)