login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075501
Stirling2 triangle with scaled diagonals (powers of 6).
9
1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(6*z) - 1)*x/6) - 1.
LINKS
FORMULA
a(n, m) = (6^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*6)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 6m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-6k*x), m >= 1.
E.g.f. for m-th column: (((exp(6x)-1)/6)^m)/m!, m >= 1.
EXAMPLE
[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From Andrew Howroyd, Mar 25 2017: (Start)
Triangle starts
* 1
* 6 1
* 36 18 1
* 216 252 36 1
* 1296 3240 900 60 1
* 7776 40176 19440 2340 90 1
* 46656 489888 390096 75600 5040 126 1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[6^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(PARI) for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Columns 1-7 are A000400, A016175, A075916-A075920. Row sums are A005012.
Sequence in context: A347488 A147320 A038255 * A089504 A145927 A113365
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved