OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..920
Index entries for linear recurrences with constant coefficients, signature (18,-72).
FORMULA
a(n) = (6^n)*Stirling2(n+2, 2), n >= 0, with Stirling2(n, m) = A008277(n, m).
a(n) = 2*12^n - 6^n.
E.g.f.: (d^2/dx^2)((((exp(6*x)-1)/6)^2)/2!) = -exp(6*x) + 2*exp(12*x).
a(n) = 3^n*binomial(2^(n+1), 2). - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = 12*a(n-1) + 6^n, n >= 1. - Vincenzo Librandi, Feb 09 2011
a(n) = 18*a(n-1) - 72*a(n-2), n >= 2. - Vincenzo Librandi, Feb 09 2011
MATHEMATICA
Table[2*12^n -6^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18, -72}, {1, 18}, 40] (* Harvey P. Dale, Nov 25 2013 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) [2*12^n - 6^n: n in [0..40]]; // G. C. Greubel, Nov 13 2024
(SageMath)
A016175= BinaryRecurrenceSequence(18, -72, 1, 18)
print([A016175(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Nov 13 2024
STATUS
approved