login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016175
Expansion of 1/((1-6*x)*(1-12*x)).
5
1, 18, 252, 3240, 40176, 489888, 5925312, 71383680, 858283776, 10309483008, 123774262272, 1485653944320, 17830024114176, 213973350064128, 2567758564933632, 30813572964188160, 369765696680165376, 4437205286821429248, 53246565001813819392, 638959389381505843200, 7667516328736510181376, 92010217881788762554368
OFFSET
0,2
FORMULA
a(n) = (6^n)*Stirling2(n+2, 2), n >= 0, with Stirling2(n, m) = A008277(n, m).
a(n) = 2*12^n - 6^n.
E.g.f.: (d^2/dx^2)((((exp(6*x)-1)/6)^2)/2!) = -exp(6*x) + 2*exp(12*x).
a(n) = 3^n*binomial(2^(n+1), 2). - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = 12*a(n-1) + 6^n, n >= 1. - Vincenzo Librandi, Feb 09 2011
a(n) = 18*a(n-1) - 72*a(n-2), n >= 2. - Vincenzo Librandi, Feb 09 2011
MATHEMATICA
Table[2*12^n -6^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18, -72}, {1, 18}, 40] (* Harvey P. Dale, Nov 25 2013 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) [2*12^n - 6^n: n in [0..40]]; // G. C. Greubel, Nov 13 2024
(SageMath)
A016175= BinaryRecurrenceSequence(18, -72, 1, 18)
print([A016175(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
CROSSREFS
Second column of triangle A075501.
Sequence in context: A088924 A125475 A255371 * A062141 A157708 A159537
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Nov 13 2024
STATUS
approved