login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016172
Expansion of 1/((1-6*x)*(1-9*x)).
3
1, 15, 171, 1755, 17091, 161595, 1501011, 13789035, 125780931, 1142106075, 10339420851, 93417584715, 842935044771, 7599476096955, 68473649036691, 616733026314795, 5553418346740611, 49997691780110235
OFFSET
0,2
FORMULA
a(n) = (9^(n+1) - 6^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005
a(0)=1, a(n) = 9*a(n-1) + 6^n. - Vincenzo Librandi, Feb 09 2011
a(0)=1, a(1)=15, a(n) = 15*a(n-1) - 54*a(n-2). - Vincenzo Librandi, Feb 09 2011
E.g.f.: 3*exp(9*x) - 2*exp(6*x). - G. C. Greubel, Nov 10 2024
MATHEMATICA
Table[(9^(n+1)-6^(n+1))/3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
CoefficientList[Series[1/((1-6x)(1-9x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -54}, {1, 15}, 30] (* Harvey P. Dale, Oct 07 2015 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) [n le 2 select 15^(n-1) else 15*Self(n-1) -54*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 10 2024
(SageMath)
A016172=BinaryRecurrenceSequence(15, -54, 1, 15)
[A016172(n) for n in range(31)] # G. C. Greubel, Nov 10 2024
CROSSREFS
Cf. A016129.
Sequence in context: A339770 A240276 A206600 * A016225 A058687 A206594
KEYWORD
nonn,easy
STATUS
approved