login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016172 Expansion of 1/((1-6x)(1-9x)). 1
1, 15, 171, 1755, 17091, 161595, 1501011, 13789035, 125780931, 1142106075, 10339420851, 93417584715, 842935044771, 7599476096955, 68473649036691, 616733026314795, 5553418346740611, 49997691780110235 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..17.

Index entries for linear recurrences with constant coefficients, signature (15,-54).

FORMULA

a(n) = (9^(n+1)-6^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005

a(0)=1, a(n) = 9*a(n-1) + 6^n. - Vincenzo Librandi, Feb 09 2011

a(0)=1, a(1)=15, a(n) = 15*a(n-1) - 54*a(n-2). - Vincenzo Librandi, Feb 09 2011

MATHEMATICA

Join[{a=1, b=15}, Table[c=15*b-54*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)

CoefficientList[Series[1/((1-6x)(1-9x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{15, -54}, {1, 15}, 30] (* Harvey P. Dale, Oct 07 2015 *)

PROG

(PARI) Vec(1/((1-6*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Sequence in context: A339770 A240276 A206600 * A016225 A058687 A206594

Adjacent sequences:  A016169 A016170 A016171 * A016173 A016174 A016175

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:28 EST 2021. Contains 349557 sequences. (Running on oeis4.)