login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-6*x)*(1-9*x)).
3

%I #21 Nov 11 2024 03:47:33

%S 1,15,171,1755,17091,161595,1501011,13789035,125780931,1142106075,

%T 10339420851,93417584715,842935044771,7599476096955,68473649036691,

%U 616733026314795,5553418346740611,49997691780110235

%N Expansion of 1/((1-6*x)*(1-9*x)).

%H G. C. Greubel, <a href="/A016172/b016172.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-54).

%F a(n) = (9^(n+1) - 6^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005

%F a(0)=1, a(n) = 9*a(n-1) + 6^n. - _Vincenzo Librandi_, Feb 09 2011

%F a(0)=1, a(1)=15, a(n) = 15*a(n-1) - 54*a(n-2). - _Vincenzo Librandi_, Feb 09 2011

%F E.g.f.: 3*exp(9*x) - 2*exp(6*x). - _G. C. Greubel_, Nov 10 2024

%t Table[(9^(n+1)-6^(n+1))/3, {n,0,30}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 01 2011 *)

%t CoefficientList[Series[1/((1-6x)(1-9x)),{x,0,30}],x] (* or *) LinearRecurrence[{15,-54},{1,15},30] (* _Harvey P. Dale_, Oct 07 2015 *)

%o (PARI) Vec(1/((1-6*x)*(1-9*x))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Magma) [n le 2 select 15^(n-1) else 15*Self(n-1) -54*Self(n-2): n in [1..31]]; // _G. C. Greubel_, Nov 10 2024

%o (SageMath)

%o A016172=BinaryRecurrenceSequence(15,-54,1,15)

%o [A016172(n) for n in range(31)] # _G. C. Greubel_, Nov 10 2024

%Y Cf. A016129.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_