login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016173
Expansion of 1/((1-6*x)*(1-10*x)).
2
1, 16, 196, 2176, 23056, 238336, 2430016, 24580096, 247480576, 2484883456, 24909300736, 249455804416, 2496734826496, 24980408958976, 249882453753856, 2499294722523136, 24995768335138816, 249974610010832896, 2499847660064997376, 24999085960389984256, 249994515762339905536, 2499967094574039433216
OFFSET
0,2
FORMULA
a(n) = (10^(n+1) - 6^(n+1))/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 16*a(n-1) - 60*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = 10*a(n-1) + 6^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
E.g.f.: (1/2)*(5*exp(10*x) - 3*exp(6*x)). - G. C. Greubel, Nov 13 2024
MATHEMATICA
Table[(10^(n+1) - 6^(n+1))/4, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[1/((1-6x)(1-10x)), {x, 0, 40}], x] (* Harvey P. Dale, Mar 12 2011 *)
PROG
(Magma) [(10^(n+1) - 6^(n+1))/4: n in [0..40]]; // G. C. Greubel, Nov 13 2024
(Python)
def A016173(n): return (pow(10, n+1) - pow(6, n+1))//4
print([A016173(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
CROSSREFS
Cf. A016129.
Sequence in context: A373108 A126981 A086940 * A005747 A103721 A144844
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Nov 13 2024
STATUS
approved