login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144844
a(n) = ((2 + sqrt(2))^n - (2 - sqrt(2))^n)^2/8.
1
0, 1, 16, 196, 2304, 26896, 313600, 3655744, 42614784, 496754944, 5790601216, 67500196864, 786839961600, 9172078759936, 106917585289216, 1246322708463616, 14528202160472064, 169353135091941376, 1974124812461670400, 23012085209172803584
OFFSET
0,3
FORMULA
From R. J. Mathar, Sep 24 2008: (Start)
G.f.: x*(1+2*x)/((1-2*x)*(1-12*x+4*x^2)).
a(n) = 2^(n-2)*(A001109(n+1) - 3*A001109(n) - 1) = 2^(n-1)*A001108(n). (End)
a(n) = 14*a(n-1) - 28*a(n-2) + 8*a(n-3) for n > 2; a(0) = 0, a(1) = 1; a(2) = 16. - Klaus Brockhaus, Jul 15 2009
a(n) = A007070(n)^2 = (((sqrt(2)+1)^n - (sqrt(2)-1)^n)) / 2) ^ 2. - Franklin T. Adams-Watters, Aug 06 2009
a(n) = 2^(n-3)*(Q(2*n) - 2), where Q(m) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Sep 27 2018
MATHEMATICA
Table[ Simplify[ ((2 + Sqrt@2)^n - (2 - Sqrt@2)^n)^2/8], {n, 0, 19}] (* Robert G. Wilson v, Sep 24 2008 *)
CoefficientList[Series[x (1 + 2 x) / ((1 - 2 x) (1 - 12 x + 4 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 06 2018 *)
LinearRecurrence[{14, -28, 8}, {0, 1, 16}, 20] (* Harvey P. Dale, Apr 12 2020 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); [ Integers()!a: a in [ ((2+r2)^n-(2-r2)^n)^2/8: n in [0..19] ] ]; // Klaus Brockhaus, Oct 20 2008
(Magma) I:=[0, 1, 16]; [n le 3 select I[n] else 14*Self(n-1)-28*Self(n-2)+8*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Feb 05 2018
(PARI) x='x+O('x^30); concat([0], Vec(x*(1+2*x)/((1-2*x)*(1-12*x+4*x^2)) )) \\ G. C. Greubel, Sep 27 2018
CROSSREFS
Sequence in context: A016173 A005747 A103721 * A093060 A153885 A016226
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Sep 22 2008
STATUS
approved