login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-6*x)*(1-12*x)).
5

%I #28 Nov 14 2024 05:55:51

%S 1,18,252,3240,40176,489888,5925312,71383680,858283776,10309483008,

%T 123774262272,1485653944320,17830024114176,213973350064128,

%U 2567758564933632,30813572964188160,369765696680165376,4437205286821429248,53246565001813819392,638959389381505843200,7667516328736510181376,92010217881788762554368

%N Expansion of 1/((1-6*x)*(1-12*x)).

%H G. C. Greubel, <a href="/A016175/b016175.txt">Table of n, a(n) for n = 0..920</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-72).

%F a(n) = (6^n)*Stirling2(n+2, 2), n >= 0, with Stirling2(n, m) = A008277(n, m).

%F a(n) = 2*12^n - 6^n.

%F E.g.f.: (d^2/dx^2)((((exp(6*x)-1)/6)^2)/2!) = -exp(6*x) + 2*exp(12*x).

%F a(n) = 3^n*binomial(2^(n+1), 2). - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

%F a(n) = 12*a(n-1) + 6^n, n >= 1. - _Vincenzo Librandi_, Feb 09 2011

%F a(n) = 18*a(n-1) - 72*a(n-2), n >= 2. - _Vincenzo Librandi_, Feb 09 2011

%t Table[2*12^n -6^n, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 09 2011 *)

%t LinearRecurrence[{18,-72},{1,18},40] (* _Harvey P. Dale_, Nov 25 2013 *)

%o (PARI) Vec(1/((1-6*x)*(1-12*x))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Magma) [2*12^n - 6^n: n in [0..40]]; // _G. C. Greubel_, Nov 13 2024

%o (SageMath)

%o A016175= BinaryRecurrenceSequence(18,-72,1,18)

%o print([A016175(n) for n in range(41)]) # _G. C. Greubel_, Nov 13 2024

%Y Second column of triangle A075501.

%Y Cf. A016129, A075916.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms added by _G. C. Greubel_, Nov 13 2024