This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038255 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j). 9
 1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS T(n,k) = A013613(n,n-k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013 LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7. B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121. FORMULA G.f.: 1/(1 - 6*x - x*y). - Ilya Gutkovskiy, Apr 21 2017 EXAMPLE 1 6, 1 36, 12, 1 216, 108, 18, 1 1296, 864, 216, 24, 1 7776, 6480, 2160, 360, 30, 1 46656, 46656, 19440, 4320, 540, 36, 1 279936, 326592, 163296, 45360, 7560, 756, 42, 1 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1 MAPLE for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007 PROG (Haskell) a038255 n k = a038255_tabl !! n !! k a038255_row n = a038255_tabl !! n a038255_tabl = map reverse a013613_tabl -- Reinhard Zumkeller, Nov 21 2013 CROSSREFS Cf. A038207. Cf. A000420 (row sums), A013613 (mirrored), A110440, A007318, A000400. Sequence in context: A241171 A051930 A147320 * A075501 A089504 A145927 Adjacent sequences:  A038252 A038253 A038254 * A038256 A038257 A038258 KEYWORD nonn,tabl,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 19:34 EST 2018. Contains 317413 sequences. (Running on oeis4.)