login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013613
Triangle of coefficients in expansion of (1+6x)^n.
7
1, 1, 6, 1, 12, 36, 1, 18, 108, 216, 1, 24, 216, 864, 1296, 1, 30, 360, 2160, 6480, 7776, 1, 36, 540, 4320, 19440, 46656, 46656, 1, 42, 756, 7560, 45360, 163296, 326592, 279936, 1, 48, 1008, 12096, 90720, 435456, 1306368, 2239488, 1679616
OFFSET
0,3
COMMENTS
T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - Milan Janjic, Jul 24 2015
LINKS
Michael De Vlieger and Reinhard Zumkeller, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened, rows 0..125 from Reinhard Zumkeller)
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
FORMULA
G.f.: 1 / (1 - x(1+6y)).
T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - Mircea Merca, Apr 28 2012
T(n,k) = A007318(n,k)*A000400(k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013
EXAMPLE
Triangle begins:
1;
1, 6;
1, 12, 36;
1, 18, 108, 216;
1, 24, 216, 864, 1296;
...
PROG
(Haskell)
import Data.List (inits)
a013613 n k = a013613_tabl !! n !! k
a013613_row n = a013613_tabl !! n
a013613_tabl = zipWith (zipWith (*))
(tail $ inits a000400_list) a007318_tabl
-- Reinhard Zumkeller, Nov 21 2013
CROSSREFS
Cf. A038255 (mirrored).
Sequence in context: A229085 A090850 A163945 * A122508 A171006 A176121
KEYWORD
tabl,nonn,easy
STATUS
approved