OFFSET
0,3
COMMENTS
T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - Milan Janjic, Jul 24 2015
LINKS
Michael De Vlieger and Reinhard Zumkeller, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened, rows 0..125 from Reinhard Zumkeller)
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
FORMULA
G.f.: 1 / (1 - x(1+6y)).
T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - Mircea Merca, Apr 28 2012
EXAMPLE
Triangle begins:
1;
1, 6;
1, 12, 36;
1, 18, 108, 216;
1, 24, 216, 864, 1296;
...
PROG
(Haskell)
import Data.List (inits)
a013613 n k = a013613_tabl !! n !! k
a013613_row n = a013613_tabl !! n
a013613_tabl = zipWith (zipWith (*))
(tail $ inits a000400_list) a007318_tabl
-- Reinhard Zumkeller, Nov 21 2013
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved