Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Aug 19 2021 01:01:26
%S 1,1,6,1,12,36,1,18,108,216,1,24,216,864,1296,1,30,360,2160,6480,7776,
%T 1,36,540,4320,19440,46656,46656,1,42,756,7560,45360,163296,326592,
%U 279936,1,48,1008,12096,90720,435456,1306368,2239488,1679616
%N Triangle of coefficients in expansion of (1+6x)^n.
%C T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - _Milan Janjic_, Jul 24 2015
%H Michael De Vlieger and Reinhard Zumkeller, <a href="/A013613/b013613.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened, rows 0..125 from Reinhard Zumkeller)
%H Ömür Deveci and Anthony G. Shannon, <a href="https://doi.org/10.20948/mathmontis-2021-50-4">Some aspects of Neyman triangles and Delannoy arrays</a>, Mathematica Montisnigri (2021) Vol. L, 36-43.
%F G.f.: 1 / (1 - x(1+6y)).
%F T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - _Mircea Merca_, Apr 28 2012
%F T(n,k) = A007318(n,k)*A000400(k), 0 <= k <= n. - _Reinhard Zumkeller_, Nov 21 2013
%e Triangle begins:
%e 1;
%e 1, 6;
%e 1, 12, 36;
%e 1, 18, 108, 216;
%e 1, 24, 216, 864, 1296;
%e ...
%o (Haskell)
%o import Data.List (inits)
%o a013613 n k = a013613_tabl !! n !! k
%o a013613_row n = a013613_tabl !! n
%o a013613_tabl = zipWith (zipWith (*))
%o (tail $ inits a000400_list) a007318_tabl
%o -- _Reinhard Zumkeller_, Nov 21 2013
%Y Cf. A038255 (mirrored).
%K tabl,nonn,easy
%O 0,3
%A _N. J. A. Sloane_