login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090850
Clark's triangle with f=6 read by row.
1
0, 6, 1, 12, 7, 1, 18, 19, 8, 1, 24, 37, 27, 9, 1, 30, 61, 64, 36, 10, 1, 36, 91, 125, 100, 46, 11, 1, 42, 127, 216, 225, 146, 57, 12, 1, 48, 169, 343, 441, 371, 203, 69, 13, 1, 54, 217, 512, 784, 812, 574, 272, 82, 14, 1, 60, 271, 729, 1296, 1596, 1386, 846, 354, 96, 15, 1
OFFSET
0,2
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Robert W. Donley Jr, Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Clark's Triangle
FORMULA
c(n, k) = 6*binomial(n, k+1) + binomial(n-1, k-1). - Max Alekseyev, Nov 06 2005
EXAMPLE
Triangle starts
0;
6, 1;
12, 7, 1;
18, 19, 8, 1;
...
MATHEMATICA
Join[{0}, Rest[Flatten[Table[6*Binomial[n, k+1]+Binomial[n-1, k-1], {n, 0, 10}, {k, 0, n}]]]] (* Harvey P. Dale, Mar 29 2014 *)
PROG
(Python)
from operator import add
f = 6
A090850_list = blist = [0]
for _ in range(20):
blist = [blist[0]+f]+list(map(add, blist[:-1], blist[1:]))+[1]
A090850_list.extend(blist) # Chai Wah Wu, Sep 18 2014
CROSSREFS
Sequence in context: A162933 A304252 A229085 * A163945 A013613 A122508
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Dec 09 2003
STATUS
approved