login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100206
Row sums of Clark's triangle A046902.
3
0, 7, 20, 46, 98, 202, 410, 826, 1658, 3322, 6650, 13306, 26618, 53242, 106490, 212986, 425978, 851962, 1703930, 3407866, 6815738, 13631482, 27262970, 54525946, 109051898, 218103802, 436207610, 872415226, 1744830458, 3489660922
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Clark's Triangle.
FORMULA
a(0)=0; for n>0, a(n) = 13*2^(n-1) - 6. - Max Alekseyev, May 12 2005
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: x*(7 - x)/((1 - x )*(1 - 2*x)). (End)
E.g.f.: (1/2)*(13*exp(2*x) - 12*exp(x) - 1). - G. C. Greubel, Apr 02 2024
EXAMPLE
a(0) = 0.
a(1) = 6 + 1.
a(2) = 12 + 7 + 1.
a(3) = 18 + 19 + 8 + 1.
a(4) = 24 + 37 + 27 + 9 + 1.
MATHEMATICA
Join[{0}, Table[13 2^(n-1) - 6, {n, 1, 40}]] (* Vincenzo Librandi, May 29 2016 *)
LinearRecurrence[{3, -2}, {0, 7, 20}, 30] (* Harvey P. Dale, Jul 07 2024 *)
PROG
(PARI) {a(n) = if(n, 13*2^(n-1)-6, 0)} \\ Max Alekseyev, May 12 2005
(Magma) [0] cat [13*2^(n-1)-6: n in [1..40]]; // Vincenzo Librandi, May 29 2016
(SageMath) [(13*2^n - 12 - int(n==0))/2 for n in range(41)] # G. C. Greubel, Apr 02 2024
CROSSREFS
Cf. A046902.
Sequence in context: A232599 A011934 A159222 * A298288 A299384 A007044
KEYWORD
nonn,easy
AUTHOR
Jorge Coveiro, Dec 28 2004
EXTENSIONS
More terms from Max Alekseyev, May 12 2005
STATUS
approved